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Abstract

This paper considers the software reliability model where each fault-detection time is distributed
in accordance with the extreme-value distribution. We first introduce the basic software reliabil-
ity model with doubly exponential (Gumbel) distribution, and show that the other extreme-value
software reliability models can be derived by changing the sample of fault-detection data. Fur-
thermore, we provide the efficient methods to compute the maximum likelihood estimates of the
model parameters by using the EM (expectation-maximization) algorithm.

1 Introduction

During the last three decades, the software reliability models (SRMs) have been developed by many au-
thors, and some of them have been used in the actual software testing phase. Among the SRMs, the
non-homogeneous Poisson process (NHPP) models play a central role to assess the software reliability, the
number of remaining faults in the software, the optimal software release schedule, etc.

This paper considers the software reliability model where the fault-detection time is distributed in ac-
cordance with the extreme-value distribution. We first introduce the basic software reliability model with
doubly exponential (Gumbel) distribution, and show that the other extreme-value software reliability models
can be derived by changing the samples of fault-detection data. For the parameter estimation problem, we
develop the EM (expectation-maximization) algorithm for the SRM based on the Gumbel distribution, and
show that this algorithm can be applied to the other extreme-value SRMs.

2 Extreme-Value Software Reliability Models

Let N(t) denote the number of software faults detected by time t. An NHPP-based SRM makes the following
assumptions:

Assumption A: Software failures caused by software faults occur at independent and identically distributed
(i.i.d.) random times having the continuous probability distribution function F (t) with density f(t) =
dF (t)/dt.

Assumption B: The initial number of software faults, N (> 0), is finite.

Under the above assumptions, the probability mass function of the number of faults detected by time t is
given by

Pr{N (t) = n|N} =
(

N

n

)
F (t)nF (t)N−n, (1)

where F (·) = 1−F (·). If the number of initial fault contents N is unknown, it will be appropriate to consider
that N is a discrete (integer-valued) random variable. Langberg and Singpurwalla (1985) prove that when
the initial number of software faults N obeys the Poisson distribution with parameter ω (> 0), the number
of software faults experienced before time t is given by the following NHPP:

Pr{N (t) = k} =
{ωF (t)}k

k!
e−ωF (t). (2)



Equation (2) is equivalent to the probability mass function of the NHPP having the mean value function
ωF (t). From this modeling framework, most NHPP-based SRMs can be derived by choosing the software
fault-detection time distribution F (t). If F (t) = 1 − exp{−βt} (β > 0), then we can derive the Goel and
Okumoto model (Goel and Okumoto 1979) with mean value function E[N (t)] = Λ(t) = ω(1 − exp{−βt}).

In this paper, we try to apply the extreme-value distribution into the software fault-detection time dis-
tribution. In general, there are some types of the extreme-value distribution. Since the extreme-value
distribution for minimum can be reduced to the extreme-value distribution for maximum, we first treat the
extreme-value distribution for maximum, namely, the Gumbel distribution (Type I extreme-value distribu-
tion). The Gumbel distribution function is given by

F (t;µ, θ) = exp
{
− exp

[
−

(
t − µ

θ

)]}
, (3)

where µ (> 0) and θ (> 0). However, the domain of the Gumbel distribution is t ∈ (−∞,∞) and therefore
it cannot be directly used as the software fault-detection time distribution. To change the domain of the
Gumbel distribution, we give two approaches: truncation approach and logarithm approach. First, by
truncating the Gumbel distribution at the origin, we have

Ftrunc(t; a, b) =
abt − a

1 − a
, (4)

where a = exp{− exp(µ/θ)} and b = exp{−1/θ}. The curve of the distribution function draws the Gompertz
curve. Next, we introduce the logarithm approach. Let X be the random variable which obeys the Gumbel
distribution. Define Y = eX . Then the random variable Y can take positive values and obeys the following
distribution function:

Flog(t;α, β) = exp
{−βt−α

}
, (5)

where α = 1/θ and β = exp(µ/θ). This form is equivalent to the Fréchet distribution with support t > 0.
On the other hand, the extreme-value distribution for minimum can be derived by letting Y = −X ,

which is given by

G(t;µ, θ) = 1 − exp
{
− exp

(
t + µ

θ

)}
. (6)

Similarly, the truncation and logarithm approaches can be applied to the extreme-value distribution for
minimum. By the truncation approach, we obtain

Gtrunc(t;α, λ) = 1 − exp
{

λ

α
[1 − exp(αt)]

}
, (7)

where λ = exp(µ/θ)/θ. Also, the logarithm approach yields

Glog(t;α, β) = 1 − exp {−βtα} . (8)

These distribution functions in Eqs. (7) and (8) distribution functions also correspond to the Gompertz
distribution and the Weibull distribution, respectively.

Consequently, substituting the truncated or logarithmic distribution into F (t), we have the four types
of extreme-value SRM. Notice that, since the logarithmic extreme-value distribution for minimum is the
Weibull distribution, the corresponding SRM is reduced to the generalized exponential SRM by Goel (1985).

3 Parameter Estimation

The maximum likelihood estimates (MLEs) are given by the parameters which maximize the log-likelihood
function (LLF) for provided data. Thus, in the maximum likelihood estimation, we find the parameters which
satisfy the first-order condition of optimality for the LLF, namely the simultaneous likelihood equations.



Since the likelihood equations are non-linear equations, any iterative algorithm such as the Newton’s method
is used to calculate the parameters satisfying the likelihood equations. In estimating the parameters, we
always take care of constraints of model parameters. The model parameters in the SRMs are usually subject
to an implicit constraint such as positive condition. However, it should be noted that the Newton’s method
and the other numerical methods do not always converge to MLEs satisfying the constraints, if the initial
values in the algorithms are far from the MLEs. This property is called the local convergence. This property
causes the difficulty on the choice of initial values in the parameter estimation. To overcome the problem on
selecting initial values, Okamura et al. (2002, 2003) introduce the EM algorithms for the SRMs which are
modeled in the framework mentioned in the previous section. In this paper, we apply the EM algorithm to
the SRM with the Gumbel distribution.

Suppose that the time domain data on the software fault-detection, s1, . . . , sk, tobs are available, where
si and tobs denote the software fault-detection time and the observation time, respectively. In this paper,
we develop the EM algorithm which is applied to four kinds of extreme-value SRM. Consider the modified
fault data, Dmax = (s1, . . . , sk, tobs), Dmin = (−s1, . . . ,−sk,−tobs), Dlog,max = (log s1, . . . , log sk, log tobs)
and Dlog,min = (− log s1, . . . ,− log sk,− log tobs). Assuming that the changed data are sampled from the
Gumbel distribution, the original data s1, . . . , sk, tobs obey respective types of extreme-value SRMs, so that
we can estimate the parameters for four types of extreme-value SRM by developing the EM algorithm with
the Gumbel distribution.

The EM algorithm is an iterative method for the estimation problem with incomplete data. There are
two parts: E-step and M-step. In the E-step, we calculate the expected value of the LLF for complete data,
provided that incomplete data is observed. Calculating the expected LLF requires the model parameters,
but provisional parameters are used as the model parameters in most cases. In the M-step, we find the
parameters so as to maximize the expected LLF calculated in the E-step. After finding the parameters
which maximize the expected LLF, the provisional parameters are renewed by the parameters. By executing
the E-step and the M-step iteratively until the provisional parameters converge to certain points, we get the
MLEs for model parameters.

In this case, all the fault data Dmax, Dmin, Dlog,max and Dlog,min are obviously incomplete data because
all of them are truncated by the time tobs. In particular, Dmax and Dmin are also truncated by the time 0.
Therefore, we derive the expected LLF as follows.

Suppose that D := Dmax, Dmin, Dlog,max or Dlog,min. Then we have

LLF(ω, µ, θ|D) = −E[N |D] log θ − E

[
N∑

i=1

(
Xi − µ

θ

)∣∣∣∣∣D
]
− E

[
N∑

i=1

exp
{
−

(
Xi − µ

θ

)}∣∣∣∣∣D
]

(9)

where N is the total number of software faults and Xi, i = 1, . . . , N are the fault-detection times for all the
faults.

The usual EM algorithm requires the closed form solutions of the likelihood equations for the fault-
detection time distribution, so that the closed form constructs the update formulae in the M-step. However,
in the case of the Gumbel distribution, it is not easy to find the closed form solutions. Thus we apply the
generalized EM (GEM) algorithm to estimate the parameters (McLachlan and Krishnan 1997). The GEM
algorithm does not always require the closed form solutions of the likelihood equations, but the corresponding
update in the M-step has to make the expected LLF increase. Applying the GEM algorithm, we derive the
following update formulae (M-step) to estimate the parameters:

ω := E[N |D; ω′, µ′, θ′], (10)

µ := θ′ log


 E[N |D; ω′, µ′, θ′]

E
[∑N

i=1 exp [−(Xi/θ′)]
∣∣∣D; ω′, µ′, θ′

]

 , (11)

θ := θ′E

[
N∑

i=1

(
Xi − µ′

θ′

) {
1 − exp

[
−

(
Xi − µ′

θ′

)]}∣∣∣∣∣D; ω′, µ′, θ′
]

/E[N |D; ω′, µ′, θ′]. (12)



Applying the following formulae (E-step) to the above, we can derive the EM algorithm for four types of
extreme-value SRM:

For any function h(·),

E

[
N∑

i=1

h(Xi)

∣∣∣∣∣Dmax; ω′, µ′, θ′
]

=
n∑

i=1

h(xi) + ω′
(∫ 0

−∞
h(x)f(x)dx +

∫ ∞

tobs

h(x)f(x)dx

)
, (13)

E

[
N∑

i=1

h(Xi)

∣∣∣∣∣Dmin; ω′, µ′, θ′
]

=
n∑

i=1

h(−xi) + ω′
(∫ −tobs

−∞
h(x)f(x)dx +

∫ ∞

0

h(x)f(x)dx

)
, (14)

E

[
N∑

i=1

h(Xi)

∣∣∣∣∣Dlog,max; ω′, µ′, θ′
]

=
n∑

i=1

h(log xi) + ω′
∫ ∞

log tobs

h(x)f(x)dx, (15)

E

[
N∑

i=1

h(Xi)

∣∣∣∣∣Dlog,min; ω′, µ′, θ′
]

=
n∑

i=1

h(− log xi) + ω′
∫ − log tobs

−∞
h(x)f(x)dx. (16)

Note that, in the case of Dmax and Dmin, the parameter ω is finally given by ω = ω′F (0) and ω = ω′F (0),
respectively.

4 Conclusion

In this paper, we have discussed four types of extreme-value SRM, which are based on the familiar software
debugging theory. Furthermore, we have developed the efficient iterative scheme to calculate the MLEs of
the model parameters. The proposed estimation algorithms are based on the EM principle. Although the
algorithm is proposed to the specified SRM based on the Gumbel distribution, we can apply the algorithm
to the other extreme-value SRMs by changing the observed samples.
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